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ABSTRACT 

We use the operator product expansion (OPE) to show that non- 
perturbative QCD corrections to Ap can be calculated using unsub- 
tracted dispersion relations for either the transverse or the longitu- 
dinal vacuum polarization functions. Recent calculations of the non- 
perturbative contribution to Ap based on a non-relativistic calculation 
of corrections to the tf threshold are inconsistent with this result. 
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I. INTRODUCTION 

An accurate calculation of the contribution of the t-b doublet to the p pa- 
rameter is important in two respects. The first is that it will let us translate the 
tight constraint placed on the p parameter by LEP measurements to limits on 
the t quark mass, and the second is that in the event that the t quark mass is 
measured directly at the TEVATRON, it will help us constrain the contribution 
of new physics to Ap. 

The contribution of the t-b doublet to the p parameter have been calculated 
to O(CYCX,), and the result is given by 

Ap = 16:;:ml [l- : (2T2’“)] (1) 

in the limit mb -+ 0 [ 1, 21. 
Recently, Kniehl and Sirlin estimated the size of the higher order QCD correc- 

tions to Eq. (1) using a dispersion relation for Ap [3]. Their approach has been to 
assume that the effect of non-perturbative QCD corrections is dominated by the 
change in the shape of the tf threshold. This change is then calculated using the 
leading non-relativistic approximation and then substituted into the dispersion 
relation for Ap. This work has lead to a certain amount of controversy since 
different authors found the effect to be different in magnitude, ranging from 10% 
to 80% of the 0( CY~,) correction, and sometimes even different in sign [4, 51. 

The difference in sign comes from the fact the there are two possible dispersion 
relations for Ap. In order to explain what they are, we must introduce some 
notation. Following Ref. 131, we define 

II~~A(g,ml,m~) = -i 
J 

d4ccei*‘= (OIT’ [J,V,A(z)J,V,A+(o)] lo) 

= 9pv~vtA(s,ml,m2) + Ql,rQVXKA(s,ml,m2) 

= (9,. - y) IIv*‘lA(s,ml,m2) + ($$) *V*A(s,ml,m2) 

(2) 
where s = q2, and J,““( ) p z re resents the vector and axial vector currents con- 
structed from the fermion fields, respectively. Note that 

AK”(s) = II”~“(s) + sXV*A(s) (3) 

so that 
A”*“(O) = IIV~A(~), (4) 
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unless XVsA(s) h as a pole at s = 0. We further introduce the notation 

II~“(s) = lIvA(s,ml,m2), 

X>A(s) = AKA(s,ml,m2), 

A>“(s) = AVVA(s, ml, m2), 

n:“(S) = f [lIKA(s,ml,ml) + lIKA(s,m2,m2)] , 

XZA(s) = s,ml,ml) + AvtA(s,m2,m2)] , 

A?“(S) = f [AvjA(s,mr,mr) + AKA(s,m2,m2)] . (5) 

The conservation of the neutral vector currents implies the Ward Identities: 

II,“(s) = -do(s), A,“(S) - 0. (6) 

These definitions let us write the contribution of an SU(2) fermion doublet, with 
masses ml and m2, to the vacuum polarizations of the IV and the 2 at zero 
momentum transfer s = 0 as 

hw(O) = $ [n:(O) + n:(O)] = ; [A,“(O) + A;(O)], 

l&z(O) = g2 ; ‘I2 [II,“(O) + II:(O)] = g2 fJ “la,A(O). (7) 

Note that II:(O) is actually zero from current conservation (cf. Eq. (6)) but we 
will keep it in our expressions for later convenience. Inserting Eq. (7) into the 
definition of the p parameter, we find 

Ap = I-hw(O) Dzz(O) 
M$ - M; 

= $ {[G(O) + Km] - p,“(o) + w-q} 

= s {[Am + a=(O)] - Am} 
Applying the ‘unsubtracted’ dispersion relation: 

(8) 

f(s) = i Jrn dslsfm;(;;E (9) 
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to the expression for Ap using the II(s)% gives us 

Ap+Jm$[{ ImII~(s) + ImII:(s)} - {ImIIr(s) + ImIIt(s)}] . (10) 

This dispersion relation is equivalent to that introduced in Ref. [6], and used in 
Ref. [2] to calculate the O(aa,) correction. 

If we write down an unsubtracted dispersion relation for the expression of Ap 
using the A(s)‘s, we get 

Ap+jOO-$[{ ImA! + ImAy( - ImAt( . (11) 

This is the relation that was introduced in Ref. [3]. Eqs. (10) and (11) are the 
two dispersion relations for Ap that have appeared in the literature. Our point 
here is to illustrate that, although Eqs. (10, 11) should yield the same estimate 
for Ap, under certain commonly used approximations they do not. 

In Sec. II we clarify the conditions that the II(s and A(s)% must satisfy for 
Eqs. (10) and (11) to be true. These conditions are indeed satisfied to order (~a, 
in perturbation theory. In Sec. III, we argue that the operator product expan- 
sion (OPE) of th e current-current correlators suggests that these conditions are 
satisfied for non-perturbative QCD corrections so that both Eqs. (10) and (11) 
are valid. In Sec. IV we show that the two dispersion relations Eqs. (10) and 
(11) give different answers when used in a threshold approximation to calculate 
non-perturbative effects. We argue that the disagreement between the two dis- 
persion relations can be understood as a result of neglecting the non-threshold 
contribution of the ImII( 8) ‘s and ImA(s to Ap. Furthermore, the magnitude of 
the discrepancy between Eqs. (10, 11) can be used as a measure of the accuracy 
of the calculation. We conclude in Sec. V. 

II. THE DISPERSION RELATIONS FOR Ap 

Let us begin this section by recalling that the analyticity of a vacuum polar- 
ization function f(a) and Cauchy’s theorem tell us that 

f(3) = i 1”’ ds’ a,l:‘,‘l;c + 2 f,+ d+J!g* 

Hence for Eq. (9) to be true, f(a) must satisfy 

(12) 

lim $ 
f(S’) = 0 

hz-+m Idl=hZ a’ - s (13) 
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Applying Eq. (12) to the II(O in Eq. (S), we find 

n,V(o) = i J^’ $Imn,V(s) + $ f I=*1 $H:(s), 
II:(O) = i /^’ $ImII:(s) + & 4;, !+%(J)Y 

KY(O) = i J^’ $Imn,‘(s) + & f ,=nz $J$(a), 

&f(O) = i J”’ $ImIIf(,). + & j I-* $II$(s). 
a- a (14) 

We regard the II’s in these relations to be regularized ’ and thus finite quantities 
so that both the left and right hand sides of these equations are well defined. 
Note that the Ward Identity, Eq. (6), ensures that 

= -& f ds$(s) 
= 0, (15) 

as required. This result follows simply from Cauchy’s theorem and the (assumed) 
analyticity of X(3). If we define 

Ap,(A”) G Sk/^’ $ [{ ImIII(s) + ImII$(s)} - {ImII,“(a) + ImII~(a)}] , 

[{ma) + G~4) - {l-ma, + Gb,}] , 

the substitution of Eq. (14) into Eq. (8) gives 

Ap = ApT(A2) + ART(h2). (17) 

(The subscript “T” stands for “transverse”.) Therefore, for the dispersion relation 
Eq. (10) to be valid, we must have 

*vrnm ART = 0. 
4 08) 

lWith MS or some other regulariaation scheme which respects the symmetry of the theory 
so that the Ward Identities are satisfied. 
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This requires the linear combination of the II(a in the integrand of ART 
to vanish as IsI -+ 00. 

Similarly, applying Eq. (12) to the A(J)‘s gives us 

Al(O) = i /^’ $ImAI(s) + & 4 I=*~ $A:(a), 
A”,(O) = i I^’ $-ImA:(J) + & j’,=*, :A~(J), 
A,“(O) = i /^’ %ImAt(J). + & i ,=* $A:(.). 

8 2 (19) 

Again, we consider the A(a)‘s to be regularized and finite quantities. If we define 

ApL(A2) E 5: 1” f [{ImAp + ImA:( - ImAt( , 

ARL(A2) = g& fi ,=*1 $ [{ A3J) + A?(J)} - Ai( ) 8 

(20) 

the substitution of Eq. (19) into Eq. (8) gives us 

AP = &u(A2) + ARL(A2). (21) 

(The subscript “L” stands for “longitudinal”.) Therefore, for the dispersion re- 
lation Eq. (11) to b e valid, we must have 

lim ARC = 0, 
A2 -Pm (22) 

which requires the linear combination of the A(a)‘s in the integrand of ARL(A’) 
to vanish as 191 --+ 00. 

The actual asymptotic forms of the II(J and A(a)‘s up to order WY, can 
by found in Ref. [7] and one can explicitly check that Eqs. (18) and (22) hold. 
Therefore, to order CY~# in perturbation theory, 

AP = APT(~) = Ap&o), (23) 

III. THE OPERATOR PRODUCT EXPANSION 

In the previous section, we have seen that 

AR+) = AR&o) = 0 (24) 
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implies 

AP = APT(~) = AP+>, (25) 

and that Eq. (24) holds to order O(CYCY,) in perturbation theory. Whether these 
equations continue to be valid to higher orders in perturbation theory, and non- 
perturbatively is a difficult problem in general. However, since we are only in- 
terested in QCD corrections, the non-perturbative asymptotic behavior of the 
vacuum polarization functions H(J) and A(J) as 1~1 --t 00 can still be extracted 
from their operator product expansions. 

The OPE’s for &a(a) and A*,,(a) can be found in the appendix of Ref. [S]. 
They are: 

A:(-Q2) = d,,(Q) [&I(Q) - ti~(&)]~ + &2(~) [f&(P) - 7j22(P)]2 + 0 

A;(-Q2) = d,,(Q) [f&(Q) + 7fE2(Q)12 + &2(14 [fh(~L) + 7fd412 + 0 

A:(-Q2) = d,,(Q) [W(Q)’ + 2h2(Q)2] 

+&2(/L) [27k(/L)2 + 2*2(P12] + 0 $ 9 
( > 

(26) 

and 

where 

IQ;(-Q~) = Q~x:,&Q~) + Q&Q”) (27) 

x:(-Q”) = d,,(Q) + &2(Q)[*1(Q) ;2fi2’Q)12 

+d.,,(Q)ih(Q) - 7WQ)12 
Q2 

x2(-Q’) = &(Q) + c~~~(Q)‘~~(~) - *2(Q)12 
Q2 

+bA3(Q)[&(Q) + +dQ)12 
Q' 

A,"( -Q2) = c,,(Q) + eX2(Q) [2h1(Q)2;22h2(g)21 

A;( -&2) = d,,(Q) + &(Q) [27iL1(Q)2;227iL2(Q)‘1 

(28) 
The short distance physics is embodied in the Wilson Coefficients d,(Q) which 
can be calculated perturbatively, and their explicit forms for the first few orders 
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in a,(Q) can be found in Ref. [8]. The long distance non-perturbative physics is 
embodied in the running masses &1,2(Q) and the vacuum expectation values of 
the higher dimensional operators that appear at higher order in the OPE. The 
Wilson coefficients are independent of the masses except through the running of 

4Q). 
That only these combinations of running masses appear at dimension 2 in 

the OPE can be understood as follows: Consider the charged channel functions 
AZ”(s) and X2”($). S’ mce they must be symmetric under the interchange 7jLr t+ 
ritz, they can only depend on (7jtr f7322)‘. Changing the sign of one of the masses 
will interchange the vector and axial-vector cases so the coefficient of (riLr 57522)’ 
in the vector channel is equal to the coefficient of (7jtr F 7itz)’ in the axial- 
vector channel. Since AI(s) must vanish when +zl = rjt2, it can only depend on 
(T&-&)~, which in turn means that A<(s) can depend only on (7izr +&z)‘. The 

dependence of the neutral channel functions A2A (s) and X?“(a) on the running 
masses follows trivially from that of the charged channel functions. 

Note that the Wilson Coefficients d.(Q) and the running masses 7&(Q) 
depend only logarithmically on Q. Therefore, though these OPE’s are derived 
in the deep Euclidean region -s = Q2 >> 0, we can expect the dependence of 
the A(s)‘s and X(s) ‘s on the powers of s to be the same all around the circle 
IsI = A2. We can see immediately that this implies ARt(oo) = ARr(oo) = 0. 
We can therefore conclude that Eq. (25) is correct even when higher order and 
non-perturbative QCD corrections are taken into account. 

IV. CALCULATING tl THRESHOLD EFFECTS 

Let us now turn to the problem of using dispersion relations to calculate the 
non-perturbative QCD corrections to Ap. In order to make use of the dispersion 
relations Ap = Apr(oo) and/or Ap = Apt, we need to know the spectral 
functions ImII( 3) and/or ImA( ) h s w en non-perturbative corrections are taken 
into account. Since it is impossible to calculate them exactly, this means that we 
must make some assumptions and approximations about their non-perturbative 
behavior. 

Let us denote the difference between the non-perturbative and perturbative 
vacuum polarization functions, by 

6ImII(a) = ImIINp(s) - ImIIp(s), 

6ImA(s) s ImAryp(s) - ImAp( (29) 

In Ref. [3], ‘t 1 was assumed that the most important effect of non-perturbative 
QCD corrections on ImII(s) and ImA( ) ’ t s 1s o modify the shape of the tf thresh- 
old. The threshold region is also the place where higher order corrections in cr, 
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can be resummed in the leading non-relativistic approximation and calculated 
reliably in terms of a simple non-relativistic Schrodinger Green’s function, as in 
Ref. [9]. Far from the threshold region, the ImII(s)‘s are assumed to be well 
approximated by their O(acr,) perturbative results. Therefore, in this approxi- 
mation, the functions 5ImII(s) and bImA(s) h ave their support only in the region 
near the threshold. Furthermore, in the leading non-relativistic approximation, 
only the s-wave states contribute so tha.t 

&rImII~(s) = -s&ImX,“(s) = -a&rImX~(s) = -&ImAt(s), (30) 

while all the other &rImII(s)‘s, &&mA(.s)‘s, and b,rImX(s)‘s are zero. (We have 
added a subscript to 6 to indicate that since we don’t expect large threshold cor- 
rections in the b6 or t6 channels, only tf threshold effects are included. This would 
not be the case if we were considering threshold effects for say a heavy fourth 
generation of quarks, but including the other channels does not alter our con- 
clusions). Note that the first equality in Eq. (30) comes from the Ward Identity 
Eq. (6), the second equality comes from the spin independence of QCD interac- 
tions in the non-relativistic limit, and the third equality comes from Eq. (3), and 
the fact that S,rImII,A(s) = 0 in this approximation. We will not specify what 
these non-zero terms look like in any detail since it is irrelevant to the following 
discussion. 

Now, let us see what happens when we substitute Eq. (30) into the definitions 
of Apr(oo) and APL(W). We find: 

6,~ [APT(W)] = -5 i Jm G&rImII,“(s) 1 s X, (31) 

and 

&r[Apt(co)] = -g [i Jrn $&rImAt(s)] = 5 [$ Jm $&rImn,“(s)] = -X, 

which are of the same magnitude but opposite in sign. This is the disagreement 
in sign that was mentioned in the introduction. 

There are two ways to interpret this result. The first is that either one, or 
both of the dispersion relations Eq. (10) and (11) are wrong. This means that 
Eqs. (18) and (22) cannot be both correct. This is the approach adopted by the 
authors of Ref. [3] who, f or a number of reasons, prefer Eq. (11) to Eq. (10). 
However, we do not think this possibility is very likely as we don’t see where the 
OPE argument of the previous section could have failed. 

A second and more plausible possibility is that using only the leading non- 
relativistic limit to calculate non-perturbative contributions to Ap is simply not 
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a good approximation and that the disagreement between Eq. (31) and (32) is a 
reflection of that fact. 

Let us take a closer look at where this apparent inconsistency between the 
two approaches comes from. The reason we get the same magnitude but opposite 
signs in Eqs. (31) and (32) is because of Eq. (30), which is only true at leading 
order in the non-relativistic approximation in a small region near the threshold. 
If we could increase the range where we can calculate non-perturbative effects, 
Eq. (30) will not be true over the entire integration interval and we expect the 
difference between the two results to be reduced. 

We illustrate this with an example: Consider the non-relativistic limit of the 
vacuum polarizations calculated to one loop in the tf channel, 

*ml--c&) 3P = 

ImJG&) 

-z + W">, 

*d&~ 

= W"), 

3 = 2 + W"), (33) 

where p = 1/l - 4mf /a. So, if we decided to calculate the perturbative con- 
tribution to Ap using the leading non-relativistic approximation (and including 
all the other channels), we would again get answers of the same magnitude but 
opposite sign depending on whether we chose to calculate using the II(s or 
the A(d)‘s. However, from the full perturbative calculation, we know that both 
techniques should give the same answer. For similar reasons, (although there 
are important differences in the perturbative and non-perturbative cases), we be- 
lieve pushing the cutoff further and further away from the threshold would cause 
the non perturbative results obtained using either the II(s or the A(a)‘s to 
converge towards each other, though perhaps very slowly. (The importance of 
the contribution from regions away from the threshold has already been noted 
in Ref. [5].) W e are currently studying how much of this convergence can be 
achieved by taking the non-relativistic approximation to higher orders in ,8 and 
thus expanding its region of applicability. 

In any approximation, a good way to test its accuracy is to see how well it 
reproduces a known result. In the present case, a good way to test how well our 
approximation gives the correct value for Apt or Apt is to see how well 
it reproduces the known value for Apr( oo) - APL( oo), namely zero. When seen in 
this context, Eqs. (31, 32) are an indication that the tf threshold approximation 
fails, indeed we cannot even determine the sign of the additional contribution to 

AP- 

10 



Of course, the bright side of it is that now we may understand the reason why 
the two dispersion relations Eq. (10) and Eq. (11) g ive seemingly contradicting 
results for the tf threshold effects. In fact, they are not contradicting at all. The 
difference between the two values is the error that should be associated with the 
approximation. 

V. CONCLUSION 

We have used the OPE to show that it is equally valid to calculate Ap using 
either the dispersion relations of Ref. [6], or those of Ref. [3]. These correspond 
to using unsubtracted dispersion relations for either the transverse or the lon- 
gitudinal parts respectively of the vacuum polarization functions that appear in 
the expression for Ap, and includes the consideration of non-perturbative effects. 

When the two dispersion relations are used to calculate the effect of the tE 
threshold on Ap, they give results which are equal in magnitude but opposite 
in sign. This disagreement should not be interpreted as a sign that one of the 
dispersion relations is wrong, but as a sign that neglecting the non-threshold 
region when calculating non-perturbative effects to Ap is a poor approximation. 
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